If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(x^2+2x)=27
We move all terms to the left:
3(x^2+2x)-(27)=0
We multiply parentheses
3x^2+6x-27=0
a = 3; b = 6; c = -27;
Δ = b2-4ac
Δ = 62-4·3·(-27)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{10}}{2*3}=\frac{-6-6\sqrt{10}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{10}}{2*3}=\frac{-6+6\sqrt{10}}{6} $
| 2(w-1)=8 | | 42-x=162 | | 15^9x=11^x+7 | | (2s+-1)2=225 | | 21x-8=4(5x+3)-4 | | 3(3w+10)/4=0 | | 5=2.54i | | -4(2t+6)=-8 | | (×-3)(x-1)-48=0 | | d/9+1/2=3/4 | | 6x=9+6x-9 | | 2p-2=36 | | ×^2+5x-10=0 | | 2x3=42 | | 4x+3-x+2=18 | | x(x-2)+x=2x+8+x=10=60 | | 4x-36+3x=90 | | x(x-2)+2x+2x+18=60 | | 5x-4+74=90 | | 2x/3-x+1/2=x/4 | | 1/7t+21=-35 | | .01(x-10)=110 | | /5p+5+3p=21 | | 3X+6y-7=6X+2 | | 3X2+6y-7=6X+2 | | 43x+(-3x)=-240x | | 8/4x+5=8/29 | | 7k-19+3k=-81 | | -81=7k-19+3k | | 3(x-8)=2(x+8) | | 3b-01=4b | | 0.01(x-4)=110 |